Brian Arthur长文综述:复杂经济学的基础
导语
经济不是机械、静态、永恒和完美的,而是有机的、总是自我创造、充满活力并且生机勃勃的——它甚至具备生命属性。随着学界对新古典经济学基本假设的反思,讨论非均衡、非线性、演化的复杂经济学逐渐登上主流舞台。复杂经济学理论提出者、圣塔菲研究所外聘教授 W. Brian Arthur,2021年1月在Nature Reviews Physics发表长文,讨论了复杂经济学的基本逻辑(尤其是与新古典经济学的差异),梳理其主要的方法、主题与跨学科性,及其发展前景。
集智俱乐部正在组织为期10-12周的「复杂经济学读书会」第二季,围绕复杂经济学的内涵、基本方法、普适规律、应用场景四个方面进行探讨,并计划组织三次圆桌讨论,与国内外学者进行深入探讨。Arthur本篇综述是读书会核心参考资料之一。欢迎对此领域感兴趣的朋友报名,读书会详情见文末。
W. Brian Arthur | 作者
杜旭冲 | 译者
李红刚、刘培源、赵雨亭 | 审校
邓一雪 | 编辑
论文题目:
Foundations of complexity economics
论文地址:
https://www.nature.com/articles/s42254-020-00273-3
论文题目:
Foundations of complexity economics
论文地址:
https://www.nature.com/articles/s42254-020-00273-3
目录
1. 方法的逻辑
2. 行为的生态
3. 简单的模型,复杂的现象
4. 关于基于主体的计算
5. 网络经济学中的事件传播
6. 政策
7. 一些前沿研究
8. 整体观点
传统的新古典经济学假设完全理性的主体(agents)(公司、消费者、投资者),它们面对定义明确的问题,去采取达到总体均衡结果的最佳行为。这种理性的、均衡的系统产生了优雅的经济学,但是具有限制性,而且常常是不现实的。复杂经济学放宽了这些假设。它假定主体(agents)不同,他们关于其他主体的信息不完善,因此必须设法弄清他们所面对的情况。主体根据相互创造的结果进行探索,做出反应并不断改变其行动和策略。所得结果可能不处于均衡状态,并且可能显示出均衡分析不可见的模式和出现的现象。经济成为一种不是给定存在(not given and existing)的东西,而是通过不断发展的一系列行动、策略和信念,不断形成的东西——不是机械的、静态的、永恒的和完美的,而是有机的、总是自我创造、充满活力并且生机勃勃的生命。
在过去的150年中,经济理论将经济主体(公司、消费者、投资者)视为完全理性的决策者,他们面对定义明确的问题,去采取达到总体均衡结果的最佳行为。这种观点带来了很多洞察力(insight)。但是,许多经济学家[1–7]指出,部分基于为数学方便而选择的假设,人们对它是否普遍适用提出了疑问。自1990年代以来,经济学家开始将经济作为一个不断演化的复杂系统进行探索,并且从这种探索中走出了另一种方法——复杂经济学(complexity economics)。
复杂经济学认为经济——或者说我们感兴趣的那部分——不一定处于均衡状态,其决策者(主体)不是超理性(super-rational)的,他们面临的问题不一定是定义明确的,经济不是一种完美的哼唱机器,而是作为信念,组织原则和行为组成的不断变化的生态。这种方法于1980年代后期始,在圣塔菲研究所(Santa Fe Institute,SFI)得到大量研究,现已在整个经济学界传播开来。但是,复杂经济学的基本思想在经济学中有着更长的历史。甚至在亚当·斯密之前,经济学家就指出,经济的总体结果,例如贸易模式、市场价格以及生产和消费的商品数量,是由个人行为形成的,而个人行为又对这些总结果做出反应。有一个递归循环,正是这种递归循环使经济成为一个复杂的系统。在我看来,复杂性是全面的综合[8-11],它不是一门科学,而是科学内部的一次运动,它源于1970年代在布鲁塞尔、安阿伯和斯图加特发展的想法。它研究了系统中交互的元素如何创建整体模式,以及这些模式又如何导致元素响应做出更改或适应。这些元素可能是元胞自动机中的元胞,或者是交通中的汽车,或者是免疫系统中的生物细胞,它们可能会对邻近细胞的状态,邻近汽车或B细胞和T细胞的浓度做出反应。无论哪种情况,复杂性都探求各个元素怎样对它们相互创建的当前模式(patterns)做出反应,以及导致了什么模式的结果。
我将在这里描述的经济学放弃了均衡和理性的假设。但这并非是放弃了尝试标准假设,而是一种思考经济实际运行方式的途径。因此,我将不会给出正式的描述,而是基于个人经验来解释这种经济学是如何产生的。我也不会尝试调查该领域中的数百项研究。相反,我将讨论复杂经济学如何发展,它基于什么逻辑,其主要主题是什么以及它如何与复杂性和物理学联系在一起。我将谈论思想而不是技术,并从我自己和其他人之前的论文[12-21]的角度出发来说明要点,并指出这种方法具有变体[22, 23]和先驱(forerunners)[24, 25],这很大程度上要归功于 托斯丹·凡勃伦(Thorsten Veblen)[1]、赫伯特·西蒙[2](Herbert Simon)和弗里德里希·哈耶克[26](Friedrich Hayek)的早期工作。
1. 方法的逻辑
1. 方法的逻辑
标准经济学和基本不确定性
完美理性。它假定每个主体都使用完全合理的逻辑来解决其定义明确的问题,以优化其行为。
代表性主体。它通常假设主体彼此相同——它们是“代表”——并属于一种或少量(或分布)代表性类型。
共同知识。假定所有主体都具有这些主体类型的准确知识:其他主体是完全理性的,并且他们也共享这一共同知识。
均衡。它假定总体结果与主体行为一致——并没有激励主体改变其行为。
El Farol问题
主体对不确定的情况(ill-defined)做出的反应
2. 行为的生态(ecology)
2. 行为的生态(ecology)
3. 简单的模型,复杂的现象
3. 简单的模型,复杂的现象
4. 关于基于主体的计算
4. 关于基于主体的计算
5. 网络经济学中的事件传播
5. 网络经济学中的事件传播
变化的传播
幂律
系统性风险
6. 政策
6. 政策
7. 一些前沿研究
7. 一些前沿研究
经济中的形成
经济物理学
分配问题
更逼真的建模
行业应用
自动化经济
8. 整体观点
8. 整体观点
当小事件触发一连串进一步失控的连锁事件时,或者当一小群参与者获得对系统某些部分的控制权时,就会发生金融危机[140, 141]以其自身的私利为追求,但是却损害了整个系统。因此,在1990年代俄罗斯从共产主义向资本主义的过渡中,一小部分私人企业为了自己的利益控制了国家新释放的资产,工业生产骤降[142,143]。在加利福尼亚州2000年摆脱能源市场的束缚中,少数供应商操纵了该市场以牟取暴利,该州的财政因此遭受巨大损失[144]。在2008年美国抵押贷款支持的证券市场中,华尔街的金融机构获得了更为宽松的法规,并创造了它们从中受益匪浅的奇特衍生产品,这导致了不稳定的结构,从而使其[143, 145]崩溃。这些系统中的每一个都被操纵或被利用了,并且都崩溃了。
列表 1 | 新古典经济学和复杂经济学的区别
参考文献
1.Veblen, T. Why is economics not an evolutionary science? Q. J. Econ. 12, 373–397 (1898).
2.Simon, H. A. Models of Man: Social and Rational (Wiley, 1957).
3.Boulding, K. Samuelson’s foundations: the role of mathematics in economics. J. Polit. Econ. 56, 187–199 (1948).
4.Kirman, A. P. The intrinsic limits of modern economic theory: the emperor has no clothes. Econ. J. 99, 126–139 (1989).
5.Robinson, J. Time in economic theory. Kyklos 33, 219–229 (1980).
6.McCloskey, D. The trouble with mathematics and statistics in economics. Hist. Econ. Ideas 13, 85–102 (2005).
7.Schumpeter, J. History of Economic Analysis (Allen & Unwin, 1954).
8.Waldrop, M. M. Complexity (Simon & Schuster, 1992).
9.Mitchell, M. Complexity: A Guided Tour (Oxford Univ. Press, 2009).
10.Holland, J. H. Complexity: A Very Short Introduction (Oxford Univ. Press, 2014).
11.Thurner, S., Hanel, R. & Klimek, P. Introduction to the Theory of Complex Systems (Oxford Univ. Press, 2018).
12.Arthur, W. B. Complexity and the economy. Science 284, 107–109 (1999).
13.Arthur, W. B. Complexity and the Economy (Oxford Univ. Press, 2015).
14.Arthur, W. B. Complexity and the Economy 1–29 (Oxford Univ. Press, 2015).
15.Arthur, W. B. in Complexity Economics: Proceedings of the Santa Fe Institute’s 2019 Fall Symposium (eds Arthur, W. B., Beinhocker, E. & Stanger, A.) (SFI Press, 2020).
16.Arthur, W. B., Beinhocker, E. & Stanger, A. in Complexity Economics: Proceedings of the Santa Fe Institute’s 2019 Fall Symposium (eds Arthur, W. B., Beinhocker, E. & Stanger, A.) (SFI Press, 2020).
17.Axtell, R. What economic agents do: How cognition and interaction lead to emergence and complexity. Rev. Austrian Econ. 20, 105–122 (2007).
18.Colander, D. The Complexity Vision and the Teaching of Economics (Edward Elgar, 2000).
19.Farmer, J. D. Economics Needs to Treat the Economy as a Complex System (INET Conference Paper, 2012).
20.Kirman, A. Complex Economics: Individual and Collective Rationality (Routledge, 2011).
21.Rosser, J. B. On the complexities of complex economic dynamics. J. Econ. Perspect. 13, 169–192 (1999).
22.Epstein J. M. Generative Social Science (Princeton Univ. Press, 2006).
23.Epstein, J. M. in Handbook of Computational Economics 2. Agent-Based Computational Economics (eds Tesfatsion, L. & Judd, K. L.) 1585–1604 (Elsevier, 2006).
24.Louça, F. Bounded heresies. Early intuitions of complexity in economics. Hist. Econ. Ideas 18, 77–113 (2010).
25.Colander, D. in Handbook of Research on Complexity (ed. Rosser, J.B.) (Edward Elgar, 2009).
26.Hayek, F. A. The Theory of Complex Phenomena 332–349 (Taylor & Francis, 1964).
27.Samuelson, P. Economics (McGraw-Hill, 1967).
28.Simpson, D. The Rediscovery of Classical Economics (Edward Elgar, 2013).
29.Hayek, F. Individualism and Economic Order (Univ. Chicago Press, 1948).
30.Harris, D. J. Joan Robinson on “History versus Equilibrium” (Joan Robinson Centennial Conference, 2003).
31.Tabb, W. Reconstructing Political Economy (Routledge, 1999).
32.Mirowski, P. Machine Dreams: Economics Becomes a Cyborg Science (Cambridge Univ. Press, 2002).
33.Velupillai, K. V. in Handbook of Research on Complexity (ed. Rosser, J. B.) (Edward Elgar, 2009).
34.Kirman, A. The economic crisis is a crisis for economic theory. CESifo Econ. Stud. 56, 498–535 (2010).
35.Komlos, J. Foundations of Real-World Economics (Routledge, 2019).
36.Arrow, K., Anderson P. & Pines, D. The Economy as an Evolving Complex System (Addison-Wesley, 1988).
37.Arthur, W. B. Complexity, the Santa Fe approach, and non-equilibrium economics. Hist. Econ. Ideas 18, 149–166 (2010).
38.Fontana, M. The Santa Fe perspective on economics. Hist. Econ. Ideas 18, 167–196 (2010).
39.Kirman, A. Whom or what does the representative agent represent? J. Econ. Perspect. 6, 117–136 (1992).
40.Knight, F. Risk, Uncertainty, and Profit (Houghton Mifflin, 1921).
41.Keynes, J. M. The general theory of employment. Q. J. Econ. 51, 209–233 (1937).
42.Arthur, W. B. Bounded rationality and inductive behavior (the El Farol problem). Am. Econ. Rev. 84, 406–411 (1994).
43.Holland, J., Holyoak, K., Nisbett, R. & Thagard, P. Induction (MIT Press, 1986).
44.Sargent T. J. Bounded Rationality in Macroeconomics (Clarendon, 1993).
45.Friedman, D. & Rust J. (eds) The Double Auction Market: Institutions, Theories, and Evidence (Addison;Wesley, 1994).
46.Thaler, R. H. Misbehaving: The Making of Behavioral Economics (Norton, 2015).
47.LeBaron, B. Empirical regularities from interacting long and short memory investors in an agent-based financial market. IEEE Trans. Evolut. Comput. 5, 442–455 (2001).
48.Bronk, R. The Romantic Economist: Imagination in Economics (Cambridge Univ. Press, 2009).
49.Beckert J. & Bronk, R. (eds) Uncertain Futures: Imaginaries, Narratives, and Calculation in the Economy (Oxford Univ. Press, 2018).
50.Holland, J. H. & Miller, J. Artificial adaptive agents in economic theory. Am. Econ. Rev. 81, 363–370 (1991).
51.Arthur, W. B., Durlauf, S. & Lane, D. (eds) The Economy as an Evolving Complex System II (Addison-Wesley, 1997).
52.Beinhocker, E. The Origin of Wealth: Evolution, Complexity, and the Radical Remaking of Economics (Harvard Bus. School Press, 2006).
53.Arthur, W. B. in Handbook of Computational Economics 2. Agent-Based Computational Economics (eds Tesfatsion, L. & Judd, K. L.) 1551–1564 (Elsevier, 2006).
54.Blume, L. & Durlauf, S. The Economy as an Evolving Complex System III (Oxford Univ. Press, 2006).
55.Farmer, J. D. & Foley, D. The economy needs agent-based modelling. Nature 460, 685–686 (2009).
56.Axtell, R. in Proceedings of the 15th International Conference on Autonomous Agents and Multiagent Systems (eds Thangarah, J., Tuyls, K., Jonker, K. & Marsella, S.) (International Foundation for Autonomous Agents and Multiagent Systems, 2016).
57.Lindgren, K. in Artificial Life II (Addison-Wesley, 1991).
58.Marshall, A. Principles of Economics (1890) 8th edn (Macmillan, 1920).
59.Palmer, R. G., Arthur, W. B., Holland, J., LeBaron, B. & Tayler, P. Artificial economic life: a simple model of a stock market. Physica D 75, 264–274 (1994).
60.Arthur, W. B., Holland, J. H., LeBaron, B., Palmer, R. & Tayler, P. in Economy as an Evolving Complex System II (CRC Press, 1997).
61.Lucas, R. Asset prices in an exchange economy. Econometrica 46, 1429–1445 (1978).
62.Brock, W. A., Lakonishok, J. & LeBaron, B. Simple technical trading rules and the stochastic properties of stock returns. J. Finance 47, 1731–1764 (1992).
63.Hommes, C. H. in Handbook of Research on Complexity (Edward Elgar, 2009).
64.Kopel, M. in Handbook of Research on Complexity (Edward Elgar, 2009).
65.LeBaron, B., Arthur, W. B. & Palmer, R. Time series properties of an artificial stock market. J. Econ. Dyn. Control 23, 1487–1516 (1999).
66.Galla, T. & Farmer, J. D. Complex dynamics in learning complicated games. Proc. Natl Acad. Sci. USA 10, 1232–1236 (2013).
67.Tesfatsion, L. & Judd, K. L. (eds) Handbook of Computational Economics 2. Agent-Based Computational Economics (Elsevier, 2006).
68.Tesfatsion, L. Agent-based computational economics: a constructive approach to economic theory. in Tesfatsion & Judd, Handbook of Computational Economics 2 (2006).
69.Tesfatsion, L. Modeling economic systems as locally-constructive sequential games. J. Econ. Methodol. 24, 384–409 (2107).
70.Hommes, C. & LeBaron, B. (eds) Handbook of Computational Economics, Vol IV: Heterogeneous Agent Modeling (North-Holland, 2018).
71.Miller, J. & Page, S. Complex Adaptive Systems: An Introduction to Computational Models of Social Life (Princeton Univ. Press, 2007).
72.Romer, P. M. Mathiness in the theory of economic growth. Am. Econ. Rev. 105, 89–93 (2015).
73.Arthur, W. B. Algorithms and the Shift in Modern Science. Beijer Institute Discussion Paper 269 (Swedish Academy Sciences, 2020).
74.Newman, M. Networks: An Introduction (Oxford Univ. Press, 2010).
75.Powell, W. & Padgett, J. The Emergence of Organizations and Markets (Princeton Univ. Press, 2012).
76.Root, H. Network Origins of the Global Economy: East vs. West in a Complex Systems Perspective (Cambridge Univ. Press, 2020).
77.Newman, M., Barabási, A.-L. & Watts, D. (eds) The Structure and Dynamics of Networks (Princeton Univ. Press, 2006).
78.Scheffer, M. et al. Anticipating critical transitions. Science 338, 344–348 (2012).
79.Watts, D. A simple model of global cascades on random networks. Proc. Natl Acad. Sci. USA 9, 5766–5771 (2002).
80.Cont, R. Empirical properties of asset returns: stylized facts and statistical issues. Quant. Finance 1, 223–236 (2001).
81.Farmer, J. D. & Geanakoplos, J. The virtues and vices of equilibrium and the future of financial economics. Complexity 14, 11–38 (2008).
82.Geanakoplos, J. et al. Getting at systemic risk via an agent-based model of the housing market. Am. Econ. Rev. 102, 53–58 (2012).
83.Haldane, A. Rethinking the Financial Network. Speech given at the Financial Student Association, Amsterdam (Bank of England, 2009).
84.Poledna, S. & Thurner, S. Elimination of systemic risk in financial networks by means of a aystemic risk transaction tax. Quant. Finance 16, 1599–1613 (2014).
85.Hoogduin, L. New Approaches to Economic Challenges: Insights into Complexity and Policy (OECD, 2016).
86.Durlauf, S. N. Complexity, economics, and public policy. Polit. Philos. Econ. 11, 45–75 (2012).
87.Kirman, A. Complexity and economic policy: a paradigm shift or a change in perspective? J. Econ. Lit. 54, 534–572 (2016).
88.Colander, D. & Kupers, R. Laissez-Faire Activism in Complexity and the Art of Public Policy: Solving Society’s Problems from the Bottom Up (Princeton Univ. Press, 2014).
89.Pyka, A. (ed.) Handbook of Complexity Economics (In Press) (Rutledge, 2021).
90.Farmer, D. The Complexity Economics Revolution (In press) (Knopf, 2021).
91.Holt, R., Rosser, J. & Colander, D. The complexity era in economics. Rev. Polit. Econ. 23, 357–369 (2010).
92.Rosser, J. B. (ed.) Handbook of Research on Complexity (Eward Elgar, 2009).
93.Wilson, D. S. & Kirman, A. (eds) Complexity and Economics: Towards a New Synthesis for Economics (MIT Press, 2016).
94.Miller, J. & Page, S. 2007. Complex Adaptive Systems: An Introduction to Computational Models of Social Life (Princeton Univ. Press, 2007).
95.Kirman, A. in Rethinking Economics (eds Fisher, L. et al.) (Routledge, 2018).
96.Castaneda, G. The Paradigm of Social Complexity (CEES, 2019).
97.Hommes, C. H. Behavioral and Experimental Macroeconomics and Policy Analysis: A Complex Systems Approach (American Economic Association, 2020).
98.Dawid, H. & Delli Gatti, D. in Handbook of Computational Economics, Vol IV: Heterogeneous Agent Modeling (eds Hommes, C. & LeBaron, B.) (North-Holland, 2018).
99.LeBaron, B. & Tesfatsion, L. Modeling macroeconomies as open-ended dynamic systems of interacting agents. Am. Econ. Rev. 98, 246–250 (2008).
100.Axtell, R., Guerrero, O. & López, E. Frictional unemployment on labor flow networks. J. Econ. Behav. Organ. 160, 184–201 (2019).
101.Axtell, R. L. in Handbook of Computational Economics, Vol IV: Heterogeneous Agent Modeling (North-Holland, 2018).
102.Grabner, C. The complementary relationship between institutional and complexity economics. J. Econ. 51, 392–400 (2017).
103.Burgess, M. G. et al. Opportunities for agent-based modelling in human dimensions of fisheries. Fish Fish. 21, 570–587 (2020).
104.Elsaway, S. et al. Eight grand challenges in socio-environmental systems modeling. SESMO 2, 16226 (2020).
105.Preiser, R., Biggs, R., De Vos, A. & Folke, C. Social-ecological systems as complex adaptive systems: organizing principles for advancing research methods and approaches. Ecol. Soc. 23, 46 (2018).
106.Bailey, R. M. et al. A computational approach to managing coupled human-environmental systems: the POSEIDON model of ocean fisheries. Sustain. Sci. 14, 259–275 (2019).
107.May, R., Levin, S. & Sugihara, G. Complex systems: ecology for bankers. Nature 451, 893–895 (2008).
108.Le Baron, B. Financial price dynamics and agent-based models as inspired by Benoit Mandelbrot. Eur. Phys. J. Spec. Top. 225, 3243–3254 (2016).
109.Battiston, S. et al. Complexity theory and financial regulation. Science 351, 818–819 (2016).
110.Arthur, R. F., Jones, J. H., Bonds, M. H., Ram, Y. & Feldman, M. PLOS Comp. Biol. (in the press).
111.Pichler A., Pangallo M., del Rio-Chanona, R., Lafond, F. & Farmer, J. D. Production networks and epidemic spreading: How to restart the UK economy? Preprint at arXiv https://arxiv.org/abs/2005.10585 (2020).
112.Axtell, R. Dynamics of Firms: Data, Theories and Models: Emergent Scale and Complexity in Modern Economies (MIT Press, 2020).
113.Barabási, A.-L. & Albert, R. Emergence of scaling in complex networks. Science 286, 509–512 (1999).
114.Malvergne, Y., Saichev, A. & Sornette., D. Zipf’s law and maximum sustainable growth. J. Econ. Dyn. Control 37, 1195–1212 (2013).
115.Peters, O. The ergodicity problem in economics. Nat. Phys. 15, 1216–1221 (2019).
116.Arthur, W. B. The Nature of Technology: What it is and How it Evolves (Simon & Schuster, 2009).
117.Arthur, W. B. The structure of invention. Res. Policy 36, 274–287 (2007).
118.Arthur, W. B. & Polak, W. The evolution of technology within a simple computer model. Complexity 11, 23–31 (2006).
119.Hildago, C. & Hausmann, R. The building blocks of economic complexity. Proc. Natl Acad. Sci. USA 106, 10570–10575 (2009).
120.Lo Sardo, D. et al. Quantification of the resilience of primary care networks by stress testing the health care system. Proc. Natl Acad. Sci. USA 116, 23930–23935 (2019).
121.Davis, J. The turn in recent economics and return of orthodoxy. Camb. J. Econ. 32, 349–366 (2008).
122.Koppl, R. in Handbook of Complexity Research (ed Rosser, J.B.) (Edward Elgar, 2009).
123.Mantegna, R. & Stanley, H. E. An Introduction to Econophysics (Cambridge Univ. Press, 2000).
124.Bouchaud, J.-P., Bonart, J., Donier, J. & Gould, M. Trades, Quotes and Prices: Financial Markets Under the Microscope (Cambridge Univ. Press, 2018).
125.Buchanan, M. What has econophysics ever done for us? Nat. Phys. 9, 317 (2013).
126.Hanauer, N. & Beinhocker, E. Capitalism redefined. Democracy 31, 30–44 (2014).
127.Krugman, P. Is free trade passé? J. Econ. Perspect. 1, 131–144 (1987).
128.Scott, R. E. The High Price of “Free” Trade. Economic Policy Institute Briefing Paper 147 (Economic Policy Institute, 2003).
129.Dean, A. & Kimmel, S. Free trade and opioid overdose death in the United States. SSM Popul. Health 8, 100409 (2019).
130.Davidsson, P. et al. in Applications of Agent Technology in Traffic and Transportation (eds Klügl F., Bazzan A. & Ossowski S.) (Birkhäuser, 2005).
131.Chen, B. & Cheng, H. A review of the applications of agent technology in traffic and transportation systems. IEEE Trans. Intell. Transp. Syst. 11, 485–497 (2010).
132.Boulton, J., Allen, P. & Bowman, C. Embracing Complexity: Strategic Perspectives for an Age of Turbulence (Oxford Univ. Press, 2015).
133.Arthur, W. B. Where is technology taking the economy? McKinsey Q. Fall 697, 33–43 (2017).
134.Tesfatsion, L. A New Swing-Contract Design for Wholesale Power Markets (Wiley/IEEE Press, 2020).
135.Brittain, M. & Wei, P. Autonomous air traffic controller: A deep multi-agent reinforcement learning approach. Preprint at arXiv https://arxiv.org/abs/1905.01303v1 (2019).
136.Wolfram, S. A New Kind of Science (Wolfram Media, 2002).
137.Fontana, M. Can neoclassical economics handle complexity? The fallacy of the oil spot dynamic. J. Econ. Behav. Organ. 76, 584–596 (2010).
138.Robertson, D. S. Phase Change: the Computer Revolution in Science and Mathematics (Oxford Univ. Press, 2003).
139.Lindgren, K. & Nordahl, M. G. Evolutionary dynamics of spatial games. Physica D 75, 292–309 (1994).
140.Arthur, W. B. Complexity and the Economy 103–118 (Oxford Univ. Press, 2015).
141.Boyes, R. Meltdown Iceland: How the Global Financial Crisis Bankrupted an Entire Country (Bloomsbury, 2009).
142.Black, B., Kraakman, R. & Tarassova, A. Russian privatization and corporate governance: what went wrong? Stanford Law Rev. 52, 1731–1808 (2000).
143.Cassidy, J. How Markets Fail: The Logic of Economic Calamities (Farrar, Straus & Giroux, 2009).
144.Sweeney, J. The California Electricity Crisis (Hoover Inst. Press, 2002).
145.Colander, D. et al. The financial crisis and the systemic failure of the economics profession. Crit. Rev. 21, 249–267 (2009).
146.Bibel, G. Beyond the Black Box: The Forensics of Airplane Crashes (Johns Hopkins Univ. Press, 2008).
147.Thurston, R. A History of the Growth of the Steam Engine (Appleton & Co., 1878.)
148.Schumpeter, J. The Theory of Economic Development (Oxford Univ. Press, 1912).
149.Perez, C. Technological Revolutions and Financial Capital (Edward Elgar, 2002).
150.Arthur, W. B. Competing technologies, increasing returns, and lock-in by historical events. Econ. J. 99, 116–131 (1989).
151.Arthur, W. B. Increasing Returns and Path Dependence in the Economy (Univ. Michigan Press, 1994).
152.Tetzeli, R. A Short History of the Most Important Theory in Technology (Fast Company, 2016).
153.Krugman, P. Increasing returns and economic geography. J. Polit. Econ. 99, 483–499 (1991).
154.Helpman, E. & Krugman, P. Market Structure and Foreign Trade (MIT Press, 1985).
155.Asano, Y., Jakob, J., Kolb, J., Heitzig, J. & Farmer, J. D. Emergent inequality and endogenous dynamics in a simple behavioral macroeconomic model. Preprint at arXiv https://arxiv.org/abs/1907.02155 (2019).
156.Durlauf, S. A theory of persistent income inequality. J. Econ. Growth 1, 75–93 (1996).
157.Schelling, T. Models of segregation. Am. Econ. Rev. 59, 488–493 (1969).
(参考文献可上下滑动查看)
复杂经济学读书会第二季启动
复杂经济学读书会第二季启动
经济学理论的发展与社会环境变化密切相关。一方面,伴随计算机的发展,相应的研究技术日渐成熟,例如非线性动力学、复杂网络、ABM等,为研究者提供了更强大的分析工具;另一个方面,对“均衡”的经济学的研究,不能够解释实际的经济现象,例如金融危机、创新产生的新的发展模式等,研究者开始重视经济学的“非均衡”现象,把经济系统看做复杂系统,并力图做出更能反映现实的研究。经济学内慢慢出现了一种基于更加现实的假设的研究进路,复杂经济学一个新的经济学框架正在形成。为了促进此领域的交流与合作,我们发起了复杂经济学读书会。
集智俱乐部读书会是面向广大科研工作者的系列论文研读活动,其目的是共同深入学习探讨某个科学议题,激发科研灵感,促进科研合作。复杂经济学读书会第二季由北京师范大学李红刚、王有贵、张江、陈清华老师以及中山大学袁先智老师联合发起,从7月11日起每周一 19:00-21:00 进行,预计持续 10-12 周。我们将围绕复杂经济学的内涵、基本方法、普适规律、应用场景四个方面进行探讨,并计划组织三次圆桌讨论,与国内外学者进行深入探讨。
详情请见:
推荐阅读
复杂经济学读书会启动招募,一起探索非均衡的、演化的经济系统 综述解读:经济复杂性理论及应用 一位复杂经济学家如何改变了硅谷?对话布莱恩·阿瑟 《复杂经济学》: 圣塔菲研究所2019年秋季研讨会论文集 | 书籍速览 《张江·复杂科学前沿27讲》完整上线! 成为集智VIP,解锁全站课程/读书会 加入集智,一起复杂!